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ABSTRACT: Three-dimensional wind retrievals from ground-based Doppler radars have played an important role in me-
teorological research and nowcasting over the past four decades. However, in recent years, the proliferation of open-source
software and increased demands from applications such as convective parameterizations in numerical weather prediction
models has led to a renewed interest in these analyses. In this study, we analyze how a major, yet often-overlooked, error
source effects the quality of retrieved 3D wind fields. Namely, we investigate the effects of spatial interpolation, and show
how the common practice of pregridding radial velocity data can degrade the accuracy of the results. Alternatively, we
show that assimilating radar data directly at their observation locations improves the retrieval of important dynamic fea-
tures such as the rear flank downdraft and mesocyclone within supercells, while also reducing errors in vertical vorticity,
horizontal divergence, and all three velocity components.

SIGNIFICANCE STATEMENT: We can attempt to estimate the wind speed and direction within a weather system
when two weather radars measure it simultaneously. However, radars do not scan the whole atmosphere at once}instead,
they measure along many cross sections, each at different heights. We show that a method commonly used to stitch the
observations together degrades the accuracy of the winds. Additionally, we describe a way to feed the data directly into
the analysis without stitching it together first, and show that this improves the wind retrievals considerably. We hope these
improvements will help researchers better understand how various weather systems work, and help forecasters warn for
dangerous weather such as tornadoes.
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1. Introduction

Three-dimensional wind retrievals from Doppler radar meas-
urements have become an indispensable tool for studying the
kinematic properties of various weather systems, such as tropical
cyclones, convective storms, and tornadoes (e.g., Kosiba and
Wurman 2014; Betten et al. 2018; Markowski et al. 2018). These
analyses are also set to play an important role in observationally
verifying and improving numerical weather prediction model
simulations and parameterizations of convection (e.g., Kumar
et al. 2015; Nicol et al. 2015; Labbouz et al. 2018). Additionally,
3D wind retrievals herald exciting opportunities for severe
weather forecasting, e.g., for damaging surface winds and up-
draft intensity identification, or other research applications such
as real-time hail trajectory nowcasting and growth modeling
(Kumjian et al. 2021; Brook et al. 2021). With these applications
in mind, this study aims to investigate how the commonly over-
looked effects of spatial interpolation impact current wind re-
trieval algorithms. Our study also particularly focuses on 3D
wind retrievals for operational radar networks (e.g., Bousquet
et al. 2007; Dolan and Rutledge 2007; Park and Lee 2009) where
the undesirable effects imposed by spatial interpolation are most

severe.1 We also expect our findings to be useful in retrievals us-
ing airborne, or rapid-scan mobile radar data.

It is now the literary consensus that variational 3D wind re-
trievals outperform those involving numerical integration of
the mass continuity equation (Gao et al. 1999; Potvin et al.
2012a; North et al. 2017). These improvements are attributed
to well-known methodological shortcomings of the latter, in-
volving ill-posed boundary conditions and vertically com-
pounding errors during numerical integration (Ray et al.
1980). Despite the improvements offered by variational analy-
ses, the retrieval of accurate 3D winds from typical dual-
Doppler observations remains a challenging problem. These
challenges are greatest for the vertical velocity component,
due to the focus on low elevations in typical operational scan-
ning strategies. Under these conditions, the vertical compo-
nent of the 3D velocity vector is poorly observed, meaning
vertical velocity retrievals must rely heavily on the mass conti-
nuity constraint. Furthermore, the task is complicated by a
number of secondary factors, including spatial interpolation
errors, data gaps near the ground and near the storm top,
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1 Spatial interpolation errors are most severe in operational net-
works due to the large horizontal distances (.50 km) common be-
tween radars, and large elevation gaps (58–68) between constant
elevation scans in operational scanning strategies.
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measurement nonsimultaneity, discretization errors, and erro-
neous Doppler velocity data (e.g., due to incorrect dealiasing,
dual-PRF artifacts, sidelobe contamination or ground clutter;
Gao et al. 1999; Potvin et al. 2012b). All of these factors con-
tribute to the considerable errors noted in variational 3D
wind retrievals, especially in the vertical velocities (Potvin
et al. 2012c; Oue et al. 2019).

Gao et al. (1999) summarized that the two most pro-
nounced difficulties for vertical velocity retrievals are 1) data
gaps at the vertical domain boundaries and 2) the spatial in-
terpolation of radar information. In this study, we address the
impacts of the latter, and aim to assess how errors introduced
by spatial interpolation propagate into variational 3D wind
retrievals. However, we first pause to note the significant pro-
gress made on the first of these issues. Perhaps the most nota-
ble contribution was made by Shapiro et al. (2009), who
showed that including the vertical vorticity equation as a vari-
ational constraint can significantly improve retrievals with
data voids near the surface in observing system simulation ex-
periments (OSSEs) of simple analytic fields. Potvin et al.
(2012b) consolidated this work by showing this constraint also
aids vertical velocity retrievals in low-level data denial OSSEs
of simulated thunderstorms, and this finding has been repro-
duced in more recent studies (Dahl et al. 2019; Gebauer et al.
2022). In practice, the provision of a vertical vorticity con-
straint requires data from multiple consecutive radar scans to
estimate its temporal evolution (e.g., Protat and Zawadzki
2000). This can be achieved to varying degrees of accuracy by
estimating a constant horizontal advection vector (Shapiro
et al. 2009), or by using a combination of provisional retrievals
at successive time steps and spatially varying advection cor-
rection techniques (Potvin et al. 2012b; Dahl et al. 2019;
Gebauer et al. 2022). These studies, along with others such as
Potvin et al. (2012c) and Oue et al. (2019), have shown that
large errors can arise when the scanning time of a radar vol-
ume approaches that of operational weather radars (;5 min)
due to erroneous temporal discretizations and temporal evo-
lution of wind fields. In practice, the interpolation practices
discussed here should be used in conjunction with these previ-
ous advances.

Spatial interpolation procedures for radial velocity data in
3D wind retrievals may be characterized into two types:
1) pregridded methods and 2) direct radar assimilation meth-
ods. The former requires that radar data are interpolated to a
common, Cartesian analysis grid prior to the analysis. This
simplifies the observational constraint, but introduces signifi-
cant errors in radial velocities before the variational retrieval
has begun (Gao et al. 1999; North et al. 2017; Oue et al. 2019).
Gridding methods used in wind retrievals vary from simple
nearest neighbor/linear interpolation methods such as that
in Mohr and Vaughan (1979) (used in Sun and Crook 1998;
Protat and Zawadzki 1999; Collis et al. 2010), weighted aver-
ages such as Cressman (1959) or Barnes (1964) (used in North
et al. 2017; Oue et al. 2019; Gebauer et al. 2022), or a combi-
nation of the two in Dahl et al. (2019). The reader is referred
to Brook et al. (2022; hereafter B22) for a comprehensive dis-
cussion on the types of errors introduced by the various radar
gridding techniques. The propagation of gridding errors into

3D wind retrievals has been studied by Collis et al. (2010) for
linear interpolation and Majcen et al. (2008) for multipass
Barnes interpolation. However, it is difficult to draw reliable
conclusions regarding the relative performance of gridding
methods between these studies, due to the differences in study
setups (analytical OSSEs vs NWP model OSSEs), weather
types (simple horizontal flow vs supercell), and varying
retrieval methodologies/software implementations. To the au-
thors’ knowledge, no effort has yet been made to provide an
intercomparison of multiple gridding methods and their effects
on 3D wind retrievals.

The second category of spatial interpolation procedures for
3D wind retrievals is the direct radar assimilation approach.
In these methods, radar data are ingested into the observa-
tional constraint in its native spherical coordinates, forgoing
the pregridding of radial velocities. A comparison of the ra-
dial velocities at their measurement locations is facilitated in
the observation constraint by either a trilinear (e.g., Testud
and Chong 1983; Gao et al. 1999, 2004) or a Cressman–Barnes
weighted average (Shapiro et al. 2009; Potvin et al. 2012b) op-
erator. Gao et al. (1999) notes this “reverse” interpolation
from the regularly spaced analysis grid to the irregularly
spaced radar locations is naturally well-defined, whereas in-
terpolation from the radar locations to the analysis grid (as in
standard radar gridding) is often ill-posed due to the large
data voids between tilts in operational radar data. Encourag-
ingly, Potvin et al. (2012c) found that the analysis was largely
insensitive to the Cressman radius of influence used in their
forward operator, an indication of the well-posed nature of
this type of assimilation procedure. The radar assimilation
method also benefits from performing the interpolation simul-
taneously with the other variational constraints, such that the
mass continuity and smoothness penalties also assist in the in-
terpolation procedure. Additionally, the exact radial contribu-
tion of each Doppler measurement is also preserved in the
radar assimilation method, avoiding the spatial distortion in-
volved with averaging many individual measurements as in
the pregridded radial velocity data. These methodological ad-
vantages lead us to hypothesize that the radar assimilation
method should result in smaller spatial interpolation errors
relative to the pregridded retrieval methods (Gao et al. 1999;
Rihan et al. 2005). We aim to verify this hypothesis by directly
comparing pregridded 3D wind retrievals to those using direct
radar assimilation.

We focus our analysis on supercells in this study for two
reasons: 1) while they represent a small fraction of global con-
vection, they are disproportionately responsible for severe
weather hazards (e.g., Duda and Gallus 2010; Smith et al.
2012), and 2) they present the greatest challenge for current
wind retrieval methodologies due to the presence of complex,
mesoscale circulations and strong vertical motions (Potvin
et al. 2012b; Shapiro et al. 2009). The remainder of the manuscript
is organized as follows; first, we introduce the OSSE and wind re-
trieval methodologies used to test our hypothesis in section 2.
Second, we present qualitative and quantitative results from
our ensemble of supercell OSSE experiments in sections 3a
and 3b, before assessing the applicability of these findings on
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real supercell data in section 3c. Finally, we summarize our
findings and discuss future research directions in section 4.

2. Methodology

a. OSSE setup

In this study, we examine the effects of spatial interpolation
on 3D wind retrievals using OSSEs (e.g., Potvin et al. 2012a,b;
Dahl et al. 2019). Under the OSSE framework, observations
are simulated using a known source, meaning the accuracy of
the resulting experiments may be quantified exactly (in con-
trast to experiments with real data, where the “truth” is
unknown). The source of our OSSE data is an Advanced Re-
gional Prediction System (ARPS; Xue et al. 2000) simulation
of the 8 May 2003 Oklahoma City tornado, first described in
Xue et al. (2014). The simulation contains a mature, nearly
steady-state tornadic supercell shown in Fig. 1. The reader is
referred to Xue et al. (2014) and Schenkman et al. (2014) for
a detailed description of the supercell. The ARPS model con-
tains a terrain-following grid with 53 vertical levels, increasing
from ;20 m spacing at ground level to ;750 m spacing at the
top of the domain, and a uniform 50 m spacing in the horizon-
tal dimensions. The simulation begins at 2200 UTC and ex-
tends 20 km 3 60 km 3 80 km in the z, y, and x dimensions,
respectively, having been successively downscaled through a
series of three nested domains with 9 km, 1 km, and 100 m
horizontal grid spacings. Mesonet, rawinsonde, and Weather
Surveillance Radar-1988 Doppler (WSR-88D) data are all as-
similated into the analysis, and the reader is referred to Xue
et al. (2001, 2003) for additional details on the model physics.

Modeled wind fields from the twentieth minute of the
50-m-resolution ARPS simulation (2220 UTC) serve as the
“true” atmospheric state,2 upon which radar data are emulated at
various positions around the domain. More specifically, our
OSSE experiments contain an ensemble of 15 different dual-
Doppler observation locations (Fig. 1). The azimuthal spacing be-
tween radar pairs is set to 51.78, so that the model grid lies at the
center of the respective dual-Doppler lobe in each experiment
(defined where the cosine of the cross-beam angle , 0.9, shown
as black dotted lines in Fig. 1), eliminating errors due to poor
cross-beam angles. We implement the experimental ensemble to
reflect the various sampling geometries possible in operational do-
mains, thereby ensuring the generality and repeatability of the
findings. We choose to extend our analysis grid from the lowest
grid point at 500 m above mean sea level (MSL; note the terrain
varies gradually between ;270 and 390 m MSL across the do-
main), up to the tropopause height (;15 km altitude) and over
the entire ARPS domain (60 kmmeridionally and 80 km zonally).
The chosen domain is significantly larger than previous rapid-scan
OSSE experiments [e.g., the 5 km3 20 km3 20 km analysis grid
in Dahl et al. (2019)]. Radars are positioned at an altitude of
350 m, either 60, 70, or 80 km from the center of the domain (il-
lustrated by the varying line styles in Fig. 1), resulting in baseline

distances for dual-Doppler pairs of ;50, ;60, and ;70 km, re-
spectively. Furthermore, the farthest range for the most distant ra-
dars in our experiment is roughly 130 km. These settings reflect
our focus on retrieval methodologies applicable to operational ra-
dar networks (as opposed to small-scale, rapid-scan analyses with
mobile radars), where dual-Doppler baselines are commonly
large,3 and analysts wish to retrieve winds over large domains.

Radar data simulation is implemented identically to previ-
ous studies (e.g., Dahl et al. 2019; B22), and is described here
for completeness. The radar beam propagates assuming stan-
dard atmospheric refraction, and accounts for the curvature
of Earth using the 4/3 effective Earth radius model (Doviak
and Zrnić 1993). Model points within each radar voxel are
weighted according to their proximity to the center of the
beam, effectively functioning as individual scatterers. Radar

FIG. 1. The OSSE ensemble setup for this study. Dual-Doppler
data are simulated for 15 pairs of locations around the model grid
(pictured with reflectivity at the 20 m model level). Each simulated
radar position is represented by a triangle, with colored lines indi-
cating the collinear beam region between each radar pair (cosine
of cross beam angle. 0.9). The ensemble is made up of five differ-
ent viewing angles (2168, 2888, 08, 748, and 1448, clockwise from the
positive x axis, shown by varying colors) and three different ranges
(60, 70, and 80 km from the center of the model grid, shown by
varying line styles).

2 This analysis time is identical to that in Dahl et al. (2019),
meaning retrieved winds may be qualitatively compared to their
findings despite the smaller analysis domain used in their study.

3 For example, the largest dual-Doppler baseline distance tested
in this study corresponds to the distance between the two opera-
tional radars (70 km, Terrey Hills and Wollongong) in Sydney,
Australia’s most populous city.
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observations are calculated as a weighted average of each
scatterer as follows:

u 5

∑
n

i51
RiBiui

∑
n

i51
RiBi

, (1)

where u is the radar field (either radial velocity or reflectivity
in our case), Ri and Bi are radial and radar beam weights for
the ith of n scatterers within each radar voxel. The resolution
of the underlying model data ensures each radar measure-
ment is informed by at least one “scatterer.” Radial weights
are implemented as

Ri 5

1, |Dri| , 0:3d

max
0:5d 2 |Dri|

0:2d
, 0

( )
, |Dri| $ 0:3d

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (2)

where Dr is the scatterer’s radial offset from the center of the
radar voxel and d 5 250 m is the radial data spacing. As in
Potvin et al. (2009), the following beam weighting function
simulates the angular sensitivity of radars within the U.S. op-
erational radar network (WSR-88D):

Bi 5 exp 2 8 ln(2) Dui
uB

( )2
1

Dfi

fB

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

where Dfi and Dui are the azimuthal and elevation offsets and
fB 5 uB 5 18 are the half-power beamwidths (chosen to
mimic standard operational S-band radars). We also imple-
ment the operational scanning strategy used in the Australian
radar network, which contains 14 plan position indicator
(PPI) sweeps at the following elevations: u 5 (0.5, 0.8, 1.4, 2.4,
3.5, 4.7, 6.0, 7.8, 10.0, 13.0, 17.0, 23.0, 32.0, 45.0)8. The realistic
range, scan strategy, and dual-Doppler baselines used in these
experiments ensure the applicability of these results to real,
operational radar data. To this end, we follow B22 by contam-
inating all Doppler simulations with Gaussian observational
noise (standard deviation of 1.0 m s21) and randomly masking
5% of all measurements to mimic measurement errors.

Radar reflectivity is calculated based on the modeled hy-
drometeor mixing ratios according to Tong and Xue (2005),
and all Doppler measurements coincident with ,5 dBZ re-
flectivity are masked to mimic data gaps in nonprecipitating
regions (e.g., Potvin et al. 2012c). Finally, we assume all radar
information is collected instantaneously to eliminate temporal
discretization effects due to flow evolution and translation,
and do not include any consideration on how hydrometeor
terminal velocities affect the measured Doppler velocities
(i.e., we calculate radial wind velocities directly from the mod-
eled u, y , and w wind components assuming particle velocity
is nil). While both error sources must be accounted for in re-
trievals from observations [e.g., using a vertical vorticity con-
straint and advection correction procedure (Shapiro et al. 2009;
Potvin et al. 2012b; Shapiro et al. 2010), along with a reflectiv-
ity-based terminal velocity correction (Atlas et al. 1973)], we

control for these effects in our experiments to isolate the er-
rors due to spatial interpolation alone. Wind retrieval outputs
from all methods are masked using the 5 dBZ threshold from
the true model reflectivity to permit the direct comparison of
error statistics. These statistics include root-mean-squared er-
rors of various quantities, including the wind components
themselves, the total wind magnitude, and derived products
such as vertical vorticity z ; y /x 2 u/y and horizontal
divergence d ; u/x 1y /y. Consistent with previous studies
(e.g., Potvin et al. 2012c), centered finite derivatives with
Neumann boundary conditions were used for these derived
fields. Fractions skill scores (FSS) are also calculated on
column-maximum, or horizontal slices of vertical velocity fields,
to quantify how well each method retrieves updraft/downdraft
regions (Roberts and Lean 2008). FSS scores are well-suited
for assessing the ability to retrieve large vertical motions when
slight spatial offsets are acceptable, owing to its original use as a
neighborhood verification method for NWP rainfall accumula-
tions.4 Such cases may involve operational nowcasting or inform-
ing convection parameterizations, where identifying the size and
strength of updrafts/downdrafts may be the priority. Finally, back-
ward trajectory calculations for retrieved wind fields in section 3a
were calculated similarly to Potvin et al. (2012c) by using a second-
order Runge–Kutta scheme with an adaptive time step, along
with trilinear interpolation for the surrounding velocity values.

b. Retrieval methodology

The variational 3D wind retrieval method proceeds with a
cost function similar to those in previous literature, albeit
with two important distinctions: an altered observational con-
straint (Jo) to facilitate the various interpolation methodolo-
gies, and a novel denoising constraint (Jd). The overall cost
function is given below:

minv{Jo(v) 1 Jm(v) 1 Js(v) 1 Jd(v)}, (4)

where v 5 (u, y , w) is the 3D velocity vector, Jm is the mass
continuity constraint, and Js is the smoothing constraint, each
of which are outlined below. First, in this study, the observa-
tional constraint in Eq. (4) varies depending on the structure
of the input radial velocity data (Vr). We draw a distinction
between methods that require pregridded radial velocity data
and the proposed radar assimilation (RA) method, which in-
gests radial velocity data in their native, spherical coordinate
system. We outline these two distinct observational con-
straints below in sections 2b(1) and 2b(2), before introducing
the remaining three variational constraints that are common
to all experiments in section 2b(3).

1) PREGRIDDED OBSERVATIONAL CONSTRAINT

When radar data are pregridded onto the analysis grid (the
gridding techniques used here are outlined in section 2c), no

4 We average all FSS calculations over five spatial scales in our
study (namely, 1, 2, 3, 4, and 5 km), and found that our results
were insensitive to shortening, lengthening, or adding additional
length scales (not shown).
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spatial interpolation operator is required in the optimization
problem. Instead, the three Cartesian wind fields are itera-
tively compared to radial velocity observations on the
M 5 nz 3 ny 3 nx–sized analysis grid, through a gridded pro-
jection operator Pg : R

3M " R
M. The projection from Carte-

sian to radial velocities is achieved through the standard
geometric relationship Vr 5 v ? p, where p is the normalized
displacement vector between the radar measurement position
and the location of the radar. Under these conditions, the ob-
servational constraint takes the following form:

Jo 5 ||Vr,g 2 Pgv||22, (5)

where Vr,g denotes the pregridded radial velocity measure-
ments from both radars on a Cartesian analysis grid, and the

common ‘2 (i.e., Euclidean) norm notation ‖x‖22 5∑
N
i51x

2
i is

also used throughout the text.

2) RADAR ASSIMILATION

OBSERVATIONAL CONSTRAINT

The direct assimilation method ingests radial velocity ob-
servations (Vr) directly from the locations they were observed
by the radar. The observational constraint in this case is as
follows:

Jo 5 ||Vr 2 PCv||22, (6)

where P and C are radial velocity projection and Cressman
interpolation operators, respectively. During forward passes,
the Cressman interpolation operator is used to interpolate the
three Cartesian velocity fields from the analysis grid to the
exact radar observation locations C : R3M " R

3N, where N is
the cumulative number of observations from both radars. The
reader is referred to appendix A for supplementary informa-
tion on C. Finally, the radial projection operator [as described
in section 2b(1)] projects the three Cartesian velocity compo-
nents at each radar data location into radial velocities
P : R3N " R

N . As in Gao et al. (2004), the projection and in-
terpolation operators are combined to form a single operator
in our software implementation.

3) REMAINING CONSTRAINTS

The second constraint in Eq. (4) is the anelastic form of the
mass continuity constraint, commonly chosen for its suitability
in deep convection (Batchelor 1953). This constraint is for-
malized identically to those in previous studies, using an ideal-
ized exponential density profile r 5 r0 exp(2z/H), where r0 is
the reference density5 and H 5 10 km is the scale height of
the atmosphere (e.g., Shapiro et al. 2009; Potvin et al. 2012b).
We express it here in its simplest form:

Jm 5 lm

∣∣∣∣∣∣ux 1 yy 1 wz 2
w
H

∣∣∣∣∣∣2
2
, (7)

where lm is a user-defined weighting constant used to control
the relative importance of this constraint, and partial deriva-
tives in each Cartesian dimension are denoted by subscripts
(e.g., ux 5u/x).

B22 found that unmixed, second-order derivatives were a
compelling regularization constraint for assimilating radar
data into a Cartesian grid. The reader is referred to their ap-
pendix B for a discussion on the benefits and drawbacks of
other common smoothing constraints. We follow B22, along
with other recent wind retrieval studies (Potvin et al. 2012b;
Dahl et al. 2019; Gebauer et al. 2022), in implementing
second-order derivatives for this purpose. Theoretically,
this formulation leads to a visually pleasing minimum curva-
ture solution (Briggs 1974), while also spreading radar infor-
mation into data voids due to the three-point, centered
finite-difference stencil used for the numerical derivatives.
The implementation used here is given below:

Js 5 ∑
u2v

ly ‖uzz‖
2
2 1 lh(‖uyy‖

2
2 1 ‖uxx‖

2
2), (8)

where ly and lh are weighting constants for the vertical and
horizontal dimensions, respectively, and double subscripts de-
note second partial derivatives (e.g., uxx 52u/x2).

Injudicious application of heavy second-order smoothing
using Eq. (8) will eliminate observational radar noise at the
expense of “oversmoothing” velocity fields, whereby mean-
ingful information is filtered from the analysis (Testud and
Chong 1983; Potvin et al. 2012c). B22 found that the inclusion
of an anisotropic total variation denoising constraint, along
with a conventional second-order smoothing constraint, is able
to efficiently spread information in to data voids, eliminate ob-
servational noise, and preserve the sharp “edge” features that
are common in radar observations of deep convection. In this
study, we implement this constraint in an effort to better re-
solve the highly nonuniform, turbulent velocity information
that is commonly underestimated in 3D wind retrieval analy-
ses of strong thunderstorms (e.g., Potvin et al. 2012c; Oue et al.
2019; Evaristo et al. 2021). The denoising constraint is imple-
mented as follows:

Jd 5 ld∑
u2v

‖uz‖1
1 ‖uy‖1 1 ‖ux‖1, (9)

where ld is a tunable weighting parameter and the ‘1 norm
notation used here is equivalent to ‖x‖1 5∑

N
i51|xi|. Optimiza-

tion in experiments containing the ‘1 denoising constraint is
complicated due to the nonsmooth, nondifferentiable term in
the cost function [arising from the first-order discontinuous
absolute value operation in Eq. (9)]. As in B22, the split Breg-
man optimization method for mixed ‘1–‘2 norms is used for
optimizing the cost function in our experiments (Goldstein
and Osher 2009; Ravasi and Vasconcelos 2020).

The provision of suitable tuning parameters (lm, ly, lh, and
ld) is a challenging task in variational wind retrievals (Shapiro
et al. 2009). Theoretically, parameters should reflect the in-
tended strength of each constraint; however, such judgements
are difficult to make a priori due to factors such as observa-
tional errors and data acquisition gaps. Recent OSSE studies

5 Note there is no need to set a reference density value (r0) as it
is cancelled out in the derivation of Eq. (7).
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acquire suitable tuning parameters through experimentation,
aided by the introduction of nondimensional tuning parame-
ters that narrow the tuning parameter space (Shapiro et al.
2009; Potvin et al. 2012b; Dahl et al. 2019). We extend this ex-
perimental approach by programmatically retrieving optimal
tuning parameters for each experiment using Bayesian opti-
mization (e.g., Barth et al. 2022). Optimal tuning parameters
are obtained by minimizing the RMS error for each OSSE re-
trieval, ensuring a fair comparison between each experiment.
As in the aforementioned OSSE studies, these optimized pa-
rameters may then be employed in retrievals using observa-
tions. This approach is important when judging the potential
performance for different variational formalisms, as optimal6

parameters likely vary significantly for each experimental
setup (e.g., pregridded data may benefit from a reduced
smoothing constraint as some smoothing has already taken
place during the gridding process). We use the Bayesian opti-
mization routines within scikit-optimize for these purposes
(Head et al. 2021).

c. Radar gridding

Most recent 3D wind retrieval studies (e.g., North et al.
2017; Dahl et al. 2019; Gebauer et al. 2022), along with open-
source wind retrieval software (PyDDA; Jackson et al. 2019),
require that dual-Doppler wind data must be pregridded prior
to analysis. In this study, we aim to investigate how this pre-
processing step may degrade the resulting wind retrievals rel-
ative to the direct assimilation approach described above, and
provide guidance on how common gridding techniques per-
form relative to each other. We also include “control” dual-
Doppler observations, which are upscaled directly from the
original, high-resolution (50 m horizontal) model grid using
Cressman (1959) weighted average interpolation with a radius
of influence equal to the isotropic, analysis grid spacing (500 m).
These control experiments will illustrate the baseline per-
formance of our wind retrieval code for “perfect” observa-
tions, before they are degraded by the spatial interpolation
errors in the “radar sampled” experiments.7 Furthermore,
we test two common radar gridding techniques involving
Cressman weighted averages in two and three dimensions,
both of which are detailed below.

1) 3D CRESSMAN

Perhaps the simplest and most commonly used radar gridd-
ing methods are the weighted average methods first proposed
by Cressman (1959) and Barnes (1964). These methods are
commonly used prior to variational wind retrieval algorithms

(e.g., North et al. 2017; Oue et al. 2019; Gebauer et al. 2022),
and operate by weighting all radar observations within a ra-
dius of influence (R) from each grid point in three dimensions.
We test Cressman, rather than Barnes, weightings in this
study due to their more prominent use in radar literature
(Trapp and Doswell 2000).8 The Cressman weighting function
(W) is outlined below:

W(r) 5 exp
R2 2 r2

R2 1 r2

( )
, (10)

where r is the distance between an observation and the corre-
sponding grid point. Despite being initially proposed as an itera-
tive technique, radar analysts commonly implement Eq. (10) in
a single pass [with some exceptions, e.g., Majcen et al.
(2008)]. We follow this literary precedent by applying the
3D Cressman method in a single pass, using an open-source
implementation (PyART; Helmus and Collis 2016). As in
B22, we set R equal to the largest data spacing in the analy-
sis domain (R 5 dmax ’ 3 km) and refer to the discussion in
their section 2b regarding the provision of this parameter.

2) 2D CRESSMAN

The second gridding technique implemented here was first
described by Dahl et al. (2019) for the purposes of dual-
Doppler wind retrievals, and is subsequently referred to as
the 2D Cressman method. Here, a single-pass weighted aver-
age with Cressman weights [Eq. (10)] is used to map radar
data onto a horizontally regular, Cartesian grid along each
conical, two-dimensional, PPI surface. These surfaces are
then merged onto a 3D Cartesian grid by linearly interpolat-
ing along each vertical column according to

Vr 5 Vr,1 1
z 2 z1
z2 2 z1

(Vr,2 2 Vr,1), (11)

where subscripts 1 and 2 refer to data immediately below and
above (respectively) the grid point at height z in each column.

Using Cressman interpolation solely along PPI surfaces
permits the use of a considerably smaller R value (;1.7 km),
set by the maximum azimuthal data spacing instead of the
larger maximum elevation spacing (elevation gaps between
PPI’s commonly exceed 58 in operational scanning strategies).
A decreased R value leads to the retention of small-scale de-
tails (on the order of dmax), which are commonly filtered or
“oversmoothed” in the standard 3D Cressman gridding ap-
proach (Trapp and Doswell 2000; Zhang et al. 2005; B22).
Resolution improvements gained through smaller R values
are naturally offset by inaccuracies introduced by the vertical lin-
ear interpolation, such as first-order discontinuities in sparsely
sampled regions and spectral distortion at poorly resolved wave-
lengths (Askelson et al. 2000; Trapp and Doswell 2000; B22).
Three-dimensional wind retrievals are particularly sensitive to
this type of spectral broadening due to their reliance on finite

6 We attempt to find the optimal parameters for each experi-
ment (by experimentally limiting the parameter space in subse-
quent runs and running each optimization for 100 iterations);
however, the reported parameters may not be truly “optimal” due
to local, rather than global, convergence.

7 Note that retrievals with “perfect” control observations do not
result in wind fields with zero errors due to the effects of discreti-
zation errors, ill-posed boundary conditions and model assump-
tions (such as the anelastic mass continuity approximation) in the
retrieval methodology.

8 B22 found that this distinction is largely academic, as the
Barnes and Cressman methods produce practically indistinguish-
able results for the purposes of domainwide radar gridding.
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differences for numerical derivatives (Testud and Chong 1983),
meaning it is not immediately clear whether the added resolu-
tion achieved by the 2D Cressman method is advantageous for
our purposes. In this study, we aim to provide some experimen-
tal guidance regarding this question.

3. Results

a. Ensemble member case study

In this section, we analyze the performance of the first of 15
ensemble members pictured in Fig. 1 (i.e., experiment 1 of
15). We aim to derive a qualitative understanding of the per-
formance of each retrieval method through the analysis of
this single experiment, before providing more quantitative en-
semble statistics in section 3b. First, Fig. 2 illustrates the vari-
ous radial velocity inputs for the northwesternmost radar in
experiment 1. The control field in Figs. 2a and 2c has not un-
dergone any radar sampling; rather, it is a direct projection of
the true Cartesian wind components in the radial direction.
This setup renders it a ground truth description of the under-
lying radial velocities, limited spatially to regions with radar
reflectivity$ 5 dBZ.

Perhaps the most noteworthy signature in the control field
is the pronounced velocity couplet in region 1 of Fig. 2a, indi-
cating the presence of a strong low-level mesocyclone. The
shape and azimuthal shear values across the couplet are largely
smoothed in the pregridded radial velocities in Figs. 2b and 2e.
These effects are due to spatial aliasing in the radar gridding
methods, which reliably filters observational noise, at the ex-
pense of high-frequency information required to accurately re-
solve such small-scale features (B22). We hypothesize that this
type of smoothing will hamper the ability of pregridded meth-
ods to retrieve important dynamical features such as mesocy-
clone rotation in the resulting 3D wind retrievals. In contrast,
the simulated radar data used in the RA method (Fig. 2f) accu-
rately resolve the velocity couplet at ;60 km range in experi-
ment one, albeit in the presence of notable speckle noise added
during the radar simulation process. This level of observational
noise is common throughout the simulated radar data (e.g., in
region 2), and it is not clear a priori whether the benefits of finer
data resolution will outweigh the added observational noise in
the RAmethod.

Another important consideration for each wind retrieval
method is the spatial continuity, or equivalently, the size and
shape of data voids, in the radial velocity data. The “true” ex-
tent of the simulated radar echoes is shown in the control exper-
iment (with the minimum detectable signal defined at 5 dBZ).
The 3D Cressman method artificially extends valid data past
their true extent (e.g., between regions 3 and 4 in Fig. 2), effec-
tively “filling in”many true data voids. It is not obvious whether
this data extension is advantageous in 3D wind retrievals, as the
added observations may actually assist in retrieving valid winds
in data voids, contingent on the quality of the extrapolated
radial wind values. Velocity observations in the RA method
contain large gaps aloft due to the spacing between constant
elevation radar sweeps (e.g., region 3 in Fig. 2h), and this may
have serious implications for the accuracy of retrieved winds if

the interpolation operator (C) and the smoothing constraints
(Js) cannot effectively propagate radar information into these
data voids. Similarly, the radial velocities in the 2D Cressman
method are severely limited above the highest tilt, and below
the lowest tilt (e.g., region 2 in Fig. 2e and region 4 in Fig. 2g).
A notable consequence of these spatial continuity considera-
tions may be observed in region 4, where a signature indicating
easterly inflow in the low levels is evident in the control obser-
vations (Fig. 2c). This signature is largely absent in the pre-
gridded methods, due to oversmoothing in the 3D Cressman
observations, and data gaps below the lowest tilt in the 2D
Cressman observations. Once again, we hypothesize that the
pregridded retrievals will be adversely affected by the omission
of this important dynamical information in the underlying radial
velocity data.

Horizontal cross sections of retrieved vertical velocity for
each method are given in Fig. 3. Visual comparisons of both
shading colors and streamlines between Figs. 3a and 3c indi-
cate that the control experiment is able to reproduce the true
3D wind field very accurately. One notable exception in the
accuracy of the control experiment are small patches of spuri-
ous vertical velocity retrievals, such as those in region 2 of
Fig. 3a. These are due to boundary effects in data-sparse re-
gions, and are an example of how errors are still present in
3D wind retrievals with “perfect” radial velocities. For these
reasons, the accuracy of any 3D wind retrieval method simu-
lated using practical radar scanning geometries should also be
judged against such a control experiment, and not merely the
“true” model winds. The reader is referred to appendix B for
further discussion on boundary effects in 3D wind retrievals.

All three retrievals that ingest radar simulated radial veloci-
ties (either pregridded in 3D/2D Cressman methods, or directly
in the RA method) are able to reproduce the broadscale south-
westerly horizontal flow, along with the approximate size and
shape of the updraft within the inset region in Fig. 3 (hereafter
referred to as the analysis region). The largest errors arise in
the vertical velocity retrievals for the pregridded methods,
which largely underestimate the true magnitude of the updraft
velocities (by more than a factor of 2 in the 3D Cressman
method), and are unable to retrieve the small downdraft fea-
tures around the edges of the main updraft (blue shading,
northwest and southeast of region 1 in Fig. 3c). We attribute
these poor vertical velocity retrievals to the errors introduced
by pregridding the underlying radial velocity fields. More specif-
ically, filtering and oversmoothing of the highest radial velocity
magnitudes, along with the poorly resolved low-level conver-
gence discussed in Fig. 2, both contribute to the large vertical
velocity errors noted in Fig. 3.

Unlike pregridded methods, the RA method does accu-
rately resolve the amplitude and extent of the main updraft
region (with maximum updraft velocities in Fig. 3e approach-
ing the true values evident in Fig. 3c). Furthermore, the posi-
tion of the aforementioned downdraft features are retrieved
well in this method, while slightly underestimating maximum
downdraft speeds. We attribute this success to the higher res-
olution of the input radial velocity data, which allows the
technique to resolve the small-scale and highly dynamic circu-
lation within the analysis region. Another example of the
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retrieval of important small-scale dynamic features is the cy-
clonic rotation within region 1 in Fig. 3c. Streamlines in Fig. 3e
indicate this feature is retrieved well in the RA method, where
the easterly component of the mesocyclone rotation is clearly
visible against the prevailing westerly background flow. Both
pregridded methods were unable to retrieve any easterly wind
component within the mesocyclone region, which has impor-
tant implications for identifying supercell thunderstorms,

which cause a disproportionate amount of large hail and sig-
nificant tornadoes (e.g., Duda and Gallus 2010; Smith et al.
2012).

Vertical cross sections of vertical velocities from experiment
1 in Fig. 4 further illustrate the deficiencies of the pregridded
retrieval techniques. We will highlight these deficiencies in the
context of two important dynamic features present in the anal-
ysis inset in Fig. 4c: a rear flank downdraft (RFD) signature

FIG. 2. Simulated radial velocities for radar position 1 for each of the 3D wind retrieval methods in this study.
(a),(b),(e) Horizontal cross sections at Z5 1.5 km. (f) PPI from the second sweep (u 5 0.88). (c),(d),(g) Vertical cross
sections at Y 5 19.5 km. (h) “Pseudo” RHI from the 908 azimuth, where radar data are shaded inside the bounds of
the 18 angular beamwidth of each ray. Straight dotted lines indicate the positions of the corresponding cross sections,
and circular regions are highlighted for discussion in the text.
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close to the surface within region 1, and an overturning circu-
lation resulting from an updraft/downdraft couplet within re-
gion 2. Both pregridded methods were unable to retrieve any
downdraft areas within the inset region, meaning both the
RFD and overturning circulation are absent from the resulting
wind fields. However, the RA was again able to retrieve these
features accurately in terms of their shape and position, while
slightly underestimating the true vertical velocity maximum
values. The retrieval of these features has important implica-
tions for nowcasting meteorological hazards, such as identify-
ing potentially strong straight line winds at the surface due to
the RFD, and the existence of favorable hail growth trajecto-
ries due to the overturning circulation (e.g., Kumjian et al.
2021).

While the wind retrieval clearly benefits from the added
resolution of radial velocity observations in the RA method,

this method still displays considerable limitations when com-
pared to the control retrieval. First, consider the third
highlighted region in Fig. 4c, which contains two spatially
proximal, but distinct regions of very high vertical velocities
(.30 m s21). The control method in Fig. 4c accurately re-
trieves these separated updraft regions, meaning this scale of
motion (these features, and most convective towers, are ap-
proximately 1–2 km in diameter) is practically resolvable on
the 500 m isotropic analysis grid used in this study. The RA
method is once again able to retrieve the magnitude of this
updraft feature in region 3 much more accurately than the
pregridded methods; however, the two updraft features are
aliased into one large updraft region in Fig. 4e. This spatial
aliasing is present throughout the upper levels (.10 km), and
is a result of the sparsity of observed radar information at
these altitudes (refer to Fig. 2h). Clearly, the accuracy of the

FIG. 3. Horizontal cross sections at Z 5 5 km with a 50 dBZ reflectivity contour in gray, streamlines illustrating
horizontal velocities (length proportional to horizontal wind magnitude), and shading indicating vertical velocities:
(c) model “truth” winds, along with retrieved winds from the (a) control, (b) 3D Cressman, (d) 2D Cressman, and
(e) RA methods. Insets in each panel show a zoomed view of the analysis region discussed in the text (spanning
X5 33–47 km and Y5 20–34 km).
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RAmethod is still fundamentally limited by the scanning geome-
try of the underlying radar observations, albeit to a lesser extent
than the pregridded methods. Finally, we also note the poor per-
formance of all three radar-derived retrieval methods in the for-
ward flank of the storm (e.g., region 4 in Fig. 4). Here, spurious
vertical velocity signatures are present throughout the depth of
the storm, and are coincident with significant data gaps due to
clear air in the low levels. We posit these errors are caused by a
well-known problem in the wind retrieval literature, whereby the
impermeability boundary condition (w 5 0 at Z 5 0) in the
mass continuity constraint is poorly imposed in regions with
data voids near the surface. Studies have shown these issues
may be alleviated through the inclusion of a vertical vorticity
constraint (Shapiro et al. 2009; Potvin et al. 2012b), which is
not implemented here due to our sole focus on the effects of
spatial interpolation.

The final qualitative assessment of the wind fields from ex-
periment 1 is a comparison of simulated air parcel trajectories

in Fig. 5 (the control experiment is omitted due to its similar-
ity with the model truth). Trajectories are initiated within the
inflow of the storm at 600, 700, and 800 m altitudes, at 1 km
spacing within the horizontal bounds of the analysis box
shown in the inset in Fig. 3. Broadly speaking, trajectories cal-
culated using the true wind fields in Fig. 5a follow two main
paths: strong vertical ascent to the top of the domain (.8 km)
within the updraft [mostly those initiated in the western
(blue) and northern (orange) quadrants], or initial ascent fol-
lowed by ejection into the forward flank of the storm in the
midlevels [4–8 km, mostly the eastern (green) and southern
(red) quadrants]. The RA winds in Fig. 5d produce trajecto-
ries that are qualitatively similar to the true trajectories for all
four quadrants. Most notably, the RA method reproduces the
strong split between trajectories from the southern (blue) and
western (red) trajectories, which is also observed in Fig. 5a.
Many trajectories in the pregridded fields also exhibit very
similar trajectories to those in Fig. 5a; however, there are also

FIG. 4. As in Fig. 3, but for a vertical cross section at Y5 30 km. The inset panel shows a zoomed
view of a region spanning X5 33–47 km and Z5 0.5–8 km.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 401334

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/23/24 09:27 PM UTC



some notable differences. For example, the aforementioned
split between the western and southern inflow regions is not
observed in Figs. 5b and 5c. Rather, there exists a smooth
transition between these pathways, resulting in a roughly con-
tinuous spatial distribution between the trajectories at the top
of the storm and those ejected into the midlevels.

Another notable difference in the pregridded retrievals (vs
the radar assimilation retrievals) is the comparative smooth-
ness, or uniformity, of the trajectories, especially in the for-
ward flank. This is once again a result of filtering of important
information in the underlying gridded radial velocities, result-
ing in oversmoothed retrieved wind fields. Last, perhaps the
most notable difference in the pregridded fields is the spuri-
ous collection of low-level trajectories which initiate from the
northern quadrant of the initiation region. The presence of
these trajectories indicates a lack of convergence within the
main updraft, which ultimately results in the aforementioned
underestimation of updraft strength for these methods. The
lack of convergence in the low levels was hypothesized
through the analysis of Fig. 2, where the inflow signature was

poorly resolved in the pregridded radial velocities. Figure 5
qualitatively confirms this assumption, and emphasizes the
importance of ingesting accurate radial velocity information,
especially in the low levels.

b. Ensemble analysis

Table 1 presents a summary of the experimental results for
each retrieval method, including ensemble mean and standard
deviation values. The control experiment achieves excellent
results across all radar geometries tested in this study. Consid-
ering the average wind magnitude for the experiment is
;51 m s21, the ensemble average RMSE of 2.00 m s21 results
in an average percentage error of just ;4% in wind magni-
tudes across the domain. A standard deviation of 0.05 m s21

for the 15 experiments also indicates the technique is not par-
ticularly sensitive to different radar positions or cross beam
angles. As expected, the vast majority of error comes from
the poorly observed vertical wind component, which has an
average RMSE of 1.96 m s21, compared to the horizontal

FIG. 5. Trajectory calculations for air parcels initiated once every 1 km in the horizontal dimensions within the anal-
ysis region (pictured in black), and 600, 700, and 800 m in altitude. Trajectories are modeled for (a) true model wind
fields, and (b)–(d) retrieved wind fields, and colored according to their initial quadrant position (refer to the inset for
details on quadrant coloring).
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component RMSE’s of 0.23 and 0.22 for u and y , respectively.
We also note the control experiment is able to retrieve winds
with an average RMSE of 2.68 m s21 in the analysis region,
which indicates that the “perfect” radial velocities on a 500 m
analysis grid are capable of resolving the scales of motion very
well in this highly dynamic region of the storm. Finally, we ob-
serve that FSSs for updrafts outperform those for downdrafts in
the control experiment (0.95 vs 0.80, respectively), and note this
finding is consistent across the three radar observed methods.
This is likely a result of the proximity of downdraft regions to the
top of the analysis domain (z 5 15 km) at this time step, where
boundary errors are prevalent (cf. downdrafts in Figs. 4a,c).

As expected from the qualitative analysis in section 3a, the
quality of retrievals is considerably degraded when winds are
retrieved with simulated radar radial velocities, resulting in a
300%–350% increase in error magnitudes. Interestingly, we
did not observe reliable accuracy reductions for ensemble
members with more distant radars (not shown), indicating the
storm was adequately sampled by the volume coverage pat-
tern at each of the three ranges used in this study (60, 70, and
80 km). First, both pregridded methods score similarly in
terms of overall RMSE scores (7.17 m s21 for 3D Cressman
and 7.43 m s21 for 2D Cressman); however, ensemble stan-
dard deviations indicate that error scores are much more con-
sistent in the former. This is easily explained by the superior
error filtering qualities in the 3D Cressman analysis, which
limits the amount of observational error propagating into the
retrieved wind fields. While the smoothing properties of the
3D Cressman analysis are beneficial in the consistency of er-
ror scores, they also hinder the retrieval of strong winds in the
analysis region, where the RMSE score is considerably higher
at 11.61 m s21. The inability of the 3D Cressman method to
retrieve winds in highly dynamic regions is further under-
scored by the poor updraft and downdraft FSS values (defined
by the 5th and 95th percentiles of column-maximum vertical
velocities, w ’ 8.5 and 23.4, respectively) relative to the con-
trol experiment (0.70 vs 0.95 for updrafts, and 0.26 vs 0.80 for
downdrafts). These results ultimately illustrate the trade-off
between the 3D Cressman and 2D Cressman gridding meth-
ods: the former results in more consistent retrievals with
slightly lower total error measures, but degrades the retrieval
in the most dynamic regions of the storm, which are perhaps
the most important in terms of understanding storm dynamics
and nowcasting potential hazards.

The average RMSE score of 6.22 m s21 in the RA method
supports the aforementioned qualitative improvements over

the pregridded methods. The use of this technique results in
an average reduction in errors of 18% and 22% compared
with the 3D Cressman and 2D Cressman methods, respec-
tively, relative to the control experiment. These domainwide
improvements relative to the pregridded methods are also re-
flected in RMSEs in the analysis region (8.01 m s21), and for in-
dividual wind components over the entire domain (;3.5 m s21

errors for u, y , and w). Interestingly, while the average vertical
velocity error is slightly lower in the RA method, the majority
of RMSE improvements come from reducing errors in the hori-
zontal components, which are much lower than in the pre-
gridded retrievals. This belies the qualitative observations made
in Figs. 3 and 4, which showed considerable improvements in
RA vertical winds, especially within the analysis region. An ex-
planation for this seeming discrepancy is that high-amplitude
fields are penalized more heavily by pixel-to-pixel accuracy
measures such as RMSE, as slight spatial offsets in wind fields
result in higher error scores compared to smoother fields such
as the 3D Cressman method. This effect also accounts for the
lower RMSE values observed in the 3D Cressman method
compared to the 2D Cressman method, despite the consider-
able oversmoothing noted in the former in section 3a. We fur-
ther this hypothesis by noting that the FSSs for updraft and
downdraft regions are considerably higher for the RA method.
The updraft and downdraft FSSs in the RA method are only
7% and 21% lower, respectively, than the control experiment,
while the 3D Cressman and 2D Cressman methods show larger
a reduction of 20% and 46%, and 26% and 68%, respectively.
These statistics indicate that while the RA method may not
achieve a significantly lower RMSE for vertical velocities, it
does retrieve regions of high vertical velocity much more reli-
ably than the pregridded methods.

After presenting the mean RMSE and FSS values for the
entire domain in Table 1, we proceed to examine the variation
of these statistics with the magnitude of the underlying varia-
bles in Fig. 6. First, Fig. 6a confirms that horizontal velocities
are retrieved very well with the “perfect” observations in the
control experiment (,0.5 m s21 errors across the entire range
of magnitudes). For the other retrieval methods, the sampling
effects of the simulated radar observations considerably de-
grade the accuracy of horizontal winds, with comparatively
large RMSEs (.3 m s21). The lowest horizontal velocity er-
rors actually arise in regions with large velocity magnitudes
(;45 m s21), which correspond to the mean environmental
flow in the upper levels of the storm (8–12 km, refer to Fig. 4).
Horizontal velocity errors are lower here due to the uniformity

TABLE 1. Summary error statistics for the 15-member ensemble for each retrieval method. The ensemble mean and standard
deviation (in parentheses) are shown for the total RMSE, RMSE within the analysis region (an.), and RMSE for individual wind
components (u, y , w). Fractions skill scores (FSS) are also listed for updrafts (up, 95th percentile of the column maximum vertical
winds) and downdrafts (down, 5th percentile of the column minimum vertical winds).

RMSE RMSE an. RMSE u RMSE y RMSE w FFS up FSS down

Control 2.00 (0.05) 2.68 (0.04) 0.23 (0.13) 0.22 (0.11) 1.96 (0.03) 0.95 (0.00) 0.80 (0.02)
3D Cressman 7.17 (0.16) 11.61 (0.22) 4.42 (0.28) 4.25 (0.36) 3.68 (0.16) 0.70 (0.04) 0.26 (0.04)
2D Cressman 7.43 (0.37) 8.90 (0.37) 4.96 (0.45) 4.28 (0.29) 3.49 (0.14) 0.76 (0.04) 0.43 (0.05)
RA 6.22 (0.27) 8.03 (0.61) 3.77 (0.57) 3.61 (0.52) 3.30 (0.13) 0.88 (0.01) 0.63 (0.06)
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of the flow, with limited storm-induced perturbations and smaller
vertical velocities. In contrast, regions with low horizontal veloci-
ties (,10 m s21) occur only very close to the surface, or in
strongly dynamic regions of the storm, which oppose the broad-
scale environmental flow (such as within the mesocyclone, refer
to Fig. 3). Both of these regions are poorly resolved in the pre-
gridded retrievals, leading to large errors at low velocity magni-
tudes (especially for the 2D Cressman method, see Fig. 6a). The
3D Cressman method also predictably shows larger errors for
the strongest horizontal velocities, as the oversmoothed radial ve-
locities cannot reproduce the highest magnitude winds. Generally
speaking, the RAmethod produces the lowest horizontal velocity
errors and has the most consistent accuracy across the range of
horizontal velocity magnitudes.

The difference in error magnitudes between the control ex-
periment and the other retrieval methods is less pronounced
for vertical velocities (cf. the red lines in Figs. 6a,b). This

reflects the comparative difficulty of retrieving accurate verti-
cal velocities with low-elevation radial velocities, even with
“perfect” radar observations. Errors are lowest for all meth-
ods in areas with small vertical velocities (;0 m s21), and
generally increase at higher velocity magnitudes. As in the
horizontal velocities, 3D Cressman retrievals most poorly re-
solve the highest wind magnitudes due to oversmoothing of
important high-frequency information, and the RA method
produces the lowest errors across most vertical velocity mag-
nitudes. The RA method is also able to retrieve considerably
larger vertical velocity magnitudes (both updrafts and down-
drafts) relative to the pregridded techniques; however, these
retrieved maximum values are still considerably underesti-
mated. We also examine how FSS values vary with respect to
the thresholds used to delineate the updraft and downdraft
regions. We test thresholds between the 60th and 98th percen-
tiles of the column-maximum vertical velocity field to compute

FIG. 6. Root-mean-square errors (RMSE) across a range of magnitudes for various quantities and retrieval meth-
ods. All values are classified into 30 bins according to their magnitude between the maximum and minimum of the
true values for each field. The RMSE is calculated within each bin, and the ensemble mean error is plotted with a
solid line. One standard deviation of the ensemble values is shown above and below the mean to indicate the ensem-
ble spread. A line is plotted at each magnitude only if all 15 ensemble members have at least one valid value in the
bin, and (c),(d) thresholds used to compute FSS values are indicated by gray dotted lines.
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updraft FSSs, and between the 2nd and 40th percentiles of the
equivalent column-minimum field for downdrafts. Figures 6c
and 6d show the qualitative FSS results presented in Table 1
(which used the 5th- and 95th-percentile values) are not sensi-
tive to this threshold choice, as the RA method consistently
outperforms the pregridded methods over the range of thresh-
olds. This is particularly evident for the updraft and downdraft
thresholds at the 98th and 2nd percentiles, confirming the RA
method is better suited to retrieving regions with the most in-
tense vertical velocities. These ensemble findings concur with
the qualitative observations of vertical velocities made based
on Figs. 3 and 4 in section 3a.

We also analyze how each of the diagnostics presented in
Table 1 vary with altitude in Fig. 7. Consistent with Fig. 6, the
control experiment exhibits very small horizontal velocity er-
rors throughout the depth of the domain, but most notably at
the lowest grid point (500 m altitude). This indicates that the
impermeability condition imposed at the lowest grid point, as
opposed to the ground surface, does not adversely affect the
retrieval in this case (a more sophisticated implementation
considering the surface elevation should be used in areas with

complex terrain; Chong and Cosma 2000; Liou et al. 2012).
All three radar sampled methods exhibit large horizontal ve-
locity errors (.5 m s21) at the surface due to the missing data
below the lowest radar tilt elevation (0.58), especially the 2D
Cressman method (refer to Fig. 2g). Recall that Table 1
showed the majority of RMSE reductions in the RA method
were attained through improvements in the horizontal veloc-
ity components. Figure 7a illustrates the origin of these im-
provements. The RA method produces roughly consistent
RMSE scores throughout the depth of the storm (;4 m s21);
however, both the pregridded methods show considerable de-
ficiencies at different height levels. First, the 3D Cressman
method produces large horizontal velocity errors in the midle-
vels of the storm (;4 km) due to a combination of not resolv-
ing the small-scale dynamics such as the mesocyclone within
the core of the storm (e.g., region 1 in Fig. 3b), and boundary ef-
fects due to missing low-level data within the forward flank of
the storm (e.g., region 4 in Fig. 4b, also refer to appendix B).
Second, the 2D Cressman method exhibits large errors in the
upper levels (.10 km), where the linear interpolation scheme
used to fill large data gaps between PPI scans propagates

FIG. 7. Vertical profiles of various error scores for each retrieval method. The quantities are grouped and averaged
at each altitude level, and the ensemble mean and standard deviation are then calculated and plotted, as described
in Fig. 6.
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observational noise and creates first-order discontinuities in
the underlying radial velocity data (Trapp and Doswell 2000;
Askelson et al. 2000; B22). The ability of the RA method to
mitigate these error sources results in overall lower RMSE
scores.

Errors in vertical velocities for all four methods (including
the control) increase steadily to a height of roughly 4 km, co-
inciding with the lower portion of the strong (.30 m s21) up-
draft in the midlevels (refer to Fig. 4c). Above 4 km, the
errors in the control experiment stay roughly constant at
around 2 m s21, whereas the radar sampled methods are sig-
nificantly degraded above 8 km. We attribute this poor per-
formance to the operational radar scanning pattern used in
our experiments, which results in large elevation gaps that
fundamentally limit the accuracy achievable in the upper lev-
els. As noted in Table 1, the average improvement in vertical
velocities gained by the RA method is modest throughout the
depth of the storm, with 2D Cressman retrievals actually
producing the lowest mean RMSE between 5 and 9 km in alti-
tude. Again, we note that this result contrasts with the sub-
stantial qualitative improvements in vertical velocity observed
for the RA method in Figs. 3 and 4, and speculate that the
discrepancy may be due to the RMSE scores being biased in
favor of pixel-to-pixel comparisons of smoother analysis
fields. To verify this assertion, we recompute updraft and
downdraft FSSs for the 5th- and 95th-percentile thresholds at
each horizontal slice of the analysis grid. Figures 7c and 7d
show that the RA method exhibits modest improvements in
FSS compared to the 2D Cressman method between 5 and
9 km in altitude, despite having slightly higher RMSE scores
over the same altitude range. This may indicate a slight spatial
displacement in vertical velocities, or that errors from vertical
velocities below the FSS thresholds contribute significantly to
the RMSE in this region. Furthermore, Fig. 7d illustrates par-
ticularly low FSS values and high ensemble spread for the 3D
Cressman method, further emphasizing its inability to accu-
rately capture highly dynamic regions of the storm. Overall,
Fig. 7 shows that the RA method produces lower error scores,
and more reliably retrieves updraft and downdraft regions
throughout the depth of the storm.

While the error statistics presented thus far are useful for
understanding the error distribution over the entire domain
(Table 1), for various magnitudes (Fig. 6), or over a range of
altitudes (Fig. 7), some analysts may prioritize accurately
identifying the maximum values of certain quantities, such as
the maximum horizontal velocity in the low levels for fore-
casting severe wind hazards, or the maximum updraft velocity
for diagnosing storm severity or verifying/informing convec-
tion parameterizations in numerical weather prediction mod-
els. These maximum value statistics are provided in Fig. 8. As
expected, the pregridded retrieval methods considerably un-
derestimate the true horizontal and vertical velocity maxima,
due to oversmoothing of important radial velocity informa-
tion. Encouragingly, the RA method is able to accurately re-
produce maximum vertical velocity values below 8 km, before
considerably underestimating those farther aloft (at least
partly due to the aforementioned observational gaps at high
altitude). However, the poor performance of the control

experiment at the domain top and bottom in Fig. 8b also indi-
cates some of these errors may be partly attributed to the ill-
posed vertical boundary conditions in the mass continuity
equation.

Finally, the oversmoothing in pregridded methods is espe-
cially apparent in the derived maximum vorticity and diver-
gence fields in Figs. 8c and 8d, and the qualitative effects of
underestimating these dynamic quantities were observed in
Figs. 5b and 5c, where simulated trajectories appeared unreal-
istically uniform or laminar. The RA method considerably
outperforms these methods, while also underestimating the
true vorticity and divergence maxima throughout the depth of
the storm. The most notable improvements gained by the RA
method occur in the lower levels in Fig. 4f, where the maxi-
mum convergence near the surface is retrieved accurately.
This confirms the qualitative findings from the simulated ra-
dial velocity data in Fig. 2 and simulated trajectories in Fig. 5,
which both suggested the superior characterization of low-
level convergence and inflow in the RA method. The accurate
characterization of low-level storm inflow is crucial for resolv-
ing storm dynamics (Coffer et al. 2023), and this factor likely
contributes to the qualitative and quantitative improvements
observed from the RA method.

c. Real data case study

To investigate the applicability of the OSSE findings to
real cases, we now introduce a supercell case study from
27 November 2014 in Brisbane, Australia. This case was se-
lected as an ideal candidate for verifying the ability to retrieve
strong vertical motions, which are known to have occurred
based on prior studies (e.g., Parackal et al. 2015; Soderholm
et al. 2017). The storm tracked northward through the Brisbane
metropolitan area between 0200 and 0700 UTC, resulting
in over AUD 1.5 billion in insured losses due to giant hail
(;70 mm), severe straight-line winds, and localized flooding
(Insurance Council of Australia 2017). The storm was ob-
served by two S-band, Doppler radars: the CP2 research radar
and the operational Mount Stapylton radar (hereafter MS), lo-
cated to the southwest and southeast of Brisbane, respectively.
Figure 9 shows the analysis domain for our dual-Doppler 3D
wind retrieval, centered on the leading edge of the storm at
(27.48S, 153.058E), situated almost entirely within the dual-
Doppler lobes (;40 km between radars). Quality controlled
radar volumes are sourced from the Australian Unified Radar
Archive (Soderholm et al. 2022), containing 9 and 14 constant
elevation sweeps for CP2 and MS, respectively.9

To process real data, two minor methodological adjust-
ments are made to the partially idealized OSSE retrieval
methodology. First, we apply a reflectivity-based correction to
account for the effects of hydrometeor terminal velocities in
radial velocity measurements. We utilize the terminal velocity

9 Exact elevations are u 5 (0.98, 1.78, 2.48, 3.28, 4.78, 6.58, 9.18,
12.88, 17.88) for CP2, and u 5 (0.58, 0.98, 1.38, 1.88, 2.48, 3.18, 4.28,
5.68, 7.48, 10.08, 13.38, 17.98, 23.98, 32.08)for MS. Half-power beam-
widths and range gates are 0.938 and 150 m for CP2 and 1.08 and
250 m forMS.
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correction from the PyDDA package (Jackson et al. 2020),
which varies from pure rain (Joss and Waldvogel 1970) to hail
(Conway and Zrnić 1993) based on reflectivity thresholds.
Second, we employ a simple horizontal advection correction
to account for storm motion during the finite sampling period
of radar volumes (e.g., Shapiro et al. 2009). The average hori-
zontal advection velocity was calculated by taking the mean
optical flow velocity (PySTEPS Lucas–Kanade implementa-
tion; Pulkkinen et al. 2019) for constant-altitude reflectivity
slices between 1 and 5 km. Reflectivity grids were interpo-
lated using the variational method outlined recently by B22.
Observations from both radars were then shifted to the mid-
point of the radar scanning time (0644 UTC) according to this
average advection velocity prior to gridding or ingestion into
the RA retrieval method. The analysis grid spans 60 and 50 km
in the x and y axes, respectively, with a 500 m grid spacing. The
grid is also spaced at 500 m increments in the z axis, but extends
from 200 to 15200 mMSL.

Figure 10 presents retrieved wind fields for the 2014 Bris-
bane hailstorm for each of the retrieval strategies discussed in
this study. Horizontal streamlines in Figs. 10a–c are broadly
similar across each method, resolving the southeasterly change

to the rear of the storm, and the strong mesocyclone circula-
tion around highlight region 1 (as in Soderholm et al. 2017).
Similar to the OSSE experiments in section 3a, horizontal and
vertical velocities appear visually smoother in the pregridded
retrievals (Figs. 10b,c), whereas small-scale structures in the
vertical velocity fields, especially in the southwest of the do-
main, are resolved in the RA method (Fig. 10a). The largest
vertical velocity differences between methods occur to the
north of region 1 in this case. All three methods capture an up-
draft at the leading edge of the storm, likely a result of dy-
namic lifting ahead of the advancing gust front. However, the
leading-edge updraft appears spuriously large and intense for
2D Cressman method when compared to the main rotating up-
draft in region 1. This is likely a result of boundary effects
caused by data scarcity at the storm’s leading edge in the 2D
Cressman method (refer to appendix B), which underrepre-
sents the spatial extent of radar data, particularly in the low
levels (e.g., region 4 in Fig. 2g).

The overall position and southwest–northeast orientation
of the updraft at Z 5 4 km in highlight region 1 is retrieved
by all retrieval methods. The shape of the inflow notch (indi-
cated by the reflectivity contour in region 1) aligns well with

FIG. 8. As in Fig. 7, but for maximum values of various quantities. The “true” model maximum values for these quan-
tities are also shown in black dashed lines.
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the mesocyclone position and updraft orientation. Maximum
updraft velocities for the RA method in Fig. 10a are much
larger than that in the pregridded retrievals. Quantitatively,
the maximum updraft speed retrieved by the RA method was
52.5 m s21, compared to 30.8 and 30.3 m s21 for the 3D and
2D Cressman methods, respectively. While the veracity of the
increased updraft velocities in the RA method cannot be di-
rectly confirmed in this real data experiment, the retrieved
maximum value of ;50 m s21 is closer to the mean values
found in supercell simulations (Peters et al. 2020), and the
OSSE experiments suggest it is likely a more accurate esti-
mate of the true updraft speed. Further qualitative evidence
of considerable updraft strength for this case is given by the
large, elevated hail core (.65 dBZ, ;0 ZDR), and bounded
weak echo region well-above the freezing level (Soderholm
et al. 2017; Brook et al. 2021).

Figures 10d–f corroborate these findings for a vertical cross
section through the main updraft. The pregridded retrievals
adequately estimate the position and shape of the updraft (as
evidenced by the position of the bounded weak echo region in
region 2 for Figs. 10d–f), but underestimate vertical velocities
relative to the RA method. Notably, the strong RFD signature
shown in region 2 for the RA method is also entirely absent in
the pregridded retrievals. This outflow feature is well docu-
mented for this event (Parackal et al. 2015; Soderholm et al.
2017; Brook et al. 2021), resulting in severe wind gusts and
strong (.10 km) hail advection toward the west. The RA

method’s ability to resolve the RFD also leads to stronger di-
vergence at lowest grid level, resulting in 40.2 m s21 maximum
horizontal winds in the outflow region (west of region 2 in
Figs. 10d–f), compared with 24.0 and 30.3 m s21 for the 3D
and 2D Cressman methods, respectively. By comparison, a
39.2 m s21 wind gust was measured roughly 10 min prior to
the analysis time at Archerfield Airport (refer to Fig. 9), along
with widespread ;20 m s21 gusts throughout Brisbane’s west-
ern suburbs (Parackal et al. 2015; Soderholm et al. 2017).
While the difficulties associated with comparing retrieved
winds aloft to wind measurements at the surface preclude a
more quantitative comparison,10 the strength and position of
these surface measurements provide qualitative support for
the RFD signature retrieved by the RA method.

Overall, the results for the Brisbane supercell case study
support the findings of the OSSEs, suggesting that the advan-
ces made in this study may be realized in practice. However,
the practical implementation of the RA method also warrants
a brief discussion on the relative computational efficiency of
each retrieval method. The introduction of an additional in-
terpolation step in the observational operator for the RA
method (i.e., PC rather than Pg, refer to section 2b) roughly
doubles the computational cost of the operator relative to the
pregridded methods. The observational constraint is only one
of four otherwise identical constraints in the cost function
[Eq. (4)]; however, it must be performed twice at each itera-
tion of the optimization procedure (forward and adjoint). In
our implementation, the overall execution time of the RA
method is thus ;2.3 times slower than the pregridded meth-
ods for this case study (15.5 vs 6.8 s, respectively). However,
when considering the additional costs involved in pregridding
the observations (4.4 and 8.0 s for 3D and 2D Cressman, re-
spectively), the RA method introduces a relatively modest
computational overhead.

4. Summary and future directions

The use of 3D wind retrievals for applications such as
storm-scale dynamics research, constraining convection pa-
rameterizations, and nowcasting wind hazards is set to in-
crease in the future, with open-source implementations such
as PyDDA (Jackson et al. 2019) increasing in popularity
within the radar science community. Despite previous studies
noting that spatial interpolation is a significant source of error
in these analyses, there is currently no direct comparison or
practical recommendations for spatial interpolation method-
ologies. In this study, we aimed to fill these knowledge gaps
for severe convective storms by analyzing supercell 3D wind re-
trievals for both OSSEs based on high resolution simulations
(50 m horizontal grid spacing) and a real data case study.
In both experiments, radar data were either pregridded using
two- or three-dimensional Cressman weighted average gridding

FIG. 9. Experimental setup for the Brisbane hailstorm case study,
indicating the center and extent of the analysis domain with a cross
and dotted lines, respectively. Radars used in the analysis (trian-
gles) and dual-Doppler lobes (solid lines) are shown alongside
radar reflectivity from the 3.78 tilt at 0642 UTC.

10 Retrieved winds at the lowest grid level (;170 m AGL) are
calculated using a free slip, impermeable, constant elevation
boundary condition, and do not resolve the small-scale interac-
tions (i.e., due to topography and surface roughness) that strongly
influence wind gust measurements at the surface.
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techniques, or assimilated directly into the variational wind re-
trieval algorithm using the radar assimilation (RA) method. The
outcomes of these experiments broadly confirmed the hypothe-
sis that directly assimilating, rather than pregridding, radial ve-
locity measurements results in more accurate 3D wind retrievals
for the most challenging cases (i.e., the supercell thunderstorms
investigated here). The main findings from our study are sum-
marized below:

• Spatial interpolation has a very large effect on the quality
of wind retrievals. Wind error magnitudes increased 300%–

350% when using operational radar scanning geometries
with realistic observational errors, compared to a control
experiment with “perfect” observations defined everywhere
within precipitating regions.

• Spatial interpolation errors are greater for methods using
pregridded radial velocities, resulting in average total error
magnitudes of ;7.3 m s21, compared with 6.2 m s21 in the
RA experiments.

• If restricted to pregridded retrieval strategies, the 2D
Cressman gridding performs similarly to the 3D Cressman
method in terms of error scores (albeit less consistently),
but more accurately resolves highly dynamic regions of the
simulated storm due to the increased detail in radial veloc-
ity inputs.

• The RA method qualitatively resolves important dynamic
features that the pregridded methods do not, including the

mesocyclone, rear-flank downdraft, overturning circulation
signatures, and all major updraft trajectory pathways pre-
sent within the modeled storm.

• The RA method also reduces errors in vertical vorticity,
horizontal divergence, and all three wind components (to
an RMSE of ;3.5 m s21 for u, y , and w), more accurately
retrieves the maximum values of these quantities, and more
reliably retrieves regions with intense updrafts/downdrafts
as evidenced by greater fractions skill scores.

• An investigation of a supercell case study showed promis-
ing agreement with the OSSE findings above, suggesting
that the improvements observed for the RA method are
applicable to real data in practice.

Future work will be aimed at generalizing these results us-
ing further OSSEs and real data examples containing differ-
ent weather phenomena (e.g., isolated convection, stratiform
precipitation, and tropical cyclones). These studies should in-
vestigate whether the RA method shows comparable benefits
to those described here for strong convection. We also aim to
assess how the improvements achieved with the RA tech-
nique will function alongside other recent 3D wind retrieval
developments, such as vertical vorticity constraints (Shapiro
et al. 2009; Potvin et al. 2012b) and spatially variable advec-
tion corrections (Shapiro et al. 2010). This is particularly rele-
vant for the OSSE portion of our study, which assumed an
instantaneous radar volume coverage pattern to control for

FIG. 10. Retrieved winds for the 2014 Brisbane hailstorm for each of the methods discussed in this study. The 50 dBZ reflectivity con-
tour is shown in gray, vertical velocities are shaded, and streamlines illustrate along-plane velocities. (a)–(c) Horizontal cross sections at
Z5 4 km and (d)–(f) vertical cross sections at Y524 km. Straight dashed lines indicate the positions of the corresponding cross sections,
and circular regions are highlighted for discussion in the text.
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the effects of nonstationarity. Finally, we aim to verify our
findings against vertical velocity measurements from observed
cases, as demonstrated recently in Gebauer et al. (2022).
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APPENDIX A

Projection/Interpolation Operators

The extensive use of pregridded radial velocities in recent
wind retrieval publications (e.g., North et al. 2017; Dahl
et al. 2019; Oue et al. 2019; Gebauer et al. 2022), and exclu-
sive use in the open-source software packages MultiDop
(Lang et al. 2017) and PyDDA (Jackson et al. 2019), has
obscured the once obvious distinction between pregridded and
direct radar assimilation techniques (e.g., Gao et al. 1999;
Rihan et al. 2005). In this section, we aim to clarify this distinc-
tion by providing a technical explanation of the projection and
interpolation operators used in the RA method.

In the pregridded observational constraint in Eq. (6), the
difference between the analysis fields and radar observa-
tions is a straightforward calculation on the analysis grid.
However, when the observations are provided in their na-
tive observation geometry in the RA method, the compari-
son requires a forward operator to interpolate the analysis
fields to the observation locations. Perhaps the simplest inter-
polation operator is a trilinear interpolation of the eight sur-
rounding grid points (e.g., Gao et al. 1999, 2004; B22). We
tested this operator in our OSSE experiments (not shown)
and found it performed poorly compared to the Cressman in-
terpolation operator used throughout this study. We attribute
these shortcomings to the propagation of observational noise
and the introduction of first-order discontinuities into the
analysis, which are characteristic of linear interpolation (Trapp
and Doswell 2000; Askelson et al. 2000; B22). Wind retrievals
are particularly sensitive to these effects due to their reliance
on finite difference derivatives in the mass continuity equation
(Testud and Chong 1983), meaning a Cressman interpolation
operator (with the superior filtering qualities) is more suited
to this application. The radius of influence in C was set to
1400 m for all of our experiments, having been experimentally
optimized in a set of preliminary experiments (not shown), by
setting it as a free variable in the Bayesian parameter optimi-
zation process described in section 3b(3). As in Potvin et al.
(2012c), we find our results are not particularly sensitive to
the provision of this parameter.

We illustrate the implementation of the Cressman interpola-
tion operator with a 2D Cartesian velocity field in Fig. A1a.
Computationally speaking, the operator is set up prior to the
analysis by noting which grid points are within a constant ra-
dius of influence from each observation (as in Fig. A1b), and

FIG. A1. An illustration of the Cressman interpolation (C) and
radial velocity projection (P) operators and their adjoints (C* and
P*, respectively). (a) Colored arrows show a gridded, Cartesian ve-
locity field (warmer colors represent larger magnitudes), with the
individual velocity components shown in black. (b) Cressman inter-
polation from grid points within a radius of influence (dotted
circles) of two radar observation points (diamonds). (c) Radial pro-
jection (red arrows) of the interpolated Cartesian velocities at the
observation points. The black triangle indicates the radar position,
and black circles and grid lines indicate the Cartesian analysis grid.
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the Cressman weights are precalculated according to Eq. (10).
These weights are used to interpolate the analysis fields to the
observation points, before the newly interpolated Cartesian ve-
locities are projected into radial velocities by the radial projec-
tion operator in Fig. A1c. Importantly, the C and P operators
are not commutative, meaning the order in which they are ap-
plied is significant. The order presented here is more accurate
as the radial projection takes place directly at the observation
location, instead of attempting to interpolate a strictly non-
smooth quantity in the reverse order. Also note that the Cress-
man interpolation in Fig. A1b is well defined, as more than
one grid point will always be within a radius of influence from
the observation points (due to the regularity of the Cartesian
grid). Conversely, if one attempted to interpolate the radial ve-
locity data in Fig. A1c to the grid points with a similar radius
of influence (as is attempted in pregridding methods), many
grid points would have no valid observations, producing data
voids in the result. The radius of influence must then be in-
flated to mask the data acquisition gaps (which are very large
between constant elevation sweeps), thereby filtering important
information from the resulting data field.

APPENDIX B

Data Boundary Effects

Dual-Doppler 3D wind retrievals are severely hampered
by data coverage limitations that arise from two main sour-
ces: 1) weather radars only return reliable information
within regions with backscatterers (usually within clouds)
and 2) radars only take measurements at set locations de-
fined by their scanning strategy, meaning there are signifi-
cant data gaps even within strong echo regions. We showed
in our control OSSE experiments that eliminating the latter
error source (by assigning valid data everywhere within echo
regions) reduced total errors by more than 300% compared
to a standard operational scanning pattern. Furthermore, if
error source 1 is eliminated (by assigning valid radial velocity
data everywhere, not shown), the retrieval errors drop to
near zero. However, when both error sources are present (as
is the case in real data), care must be taken to ensure bound-
ary errors do not propagate into valid data regions. Here, we
detail how imposing boundary conditions on the observa-
tional constraint can mitigate these effects.

First, the errors introduced at data boundaries may be
best understood by considering an isolated, high-altitude
data point with strong horizontal velocity, and no vertical
velocity. If the radar is situated parallel to the strong horizon-
tal velocities, the measured radial velocity will be large}such

that when it is projected back into Cartesian coordinates, a
significant portion will be interpreted as vertical velocity
(especially for higher elevation angles). In the absence of
valid radial velocities in the surrounding grid points, the
mass continuity and smoothing constraints will then con-
struct a spurious updraft/downdraft region to match the
isolated observation point, which is what we observed in
isolated regions in Fig. 3a, and along data boundaries in
other studies (e.g., Collis et al. 2010). We have found that
setting the vertical gradient of the observational constraint
equal to zero at these boundary grid points (boundaries
are defined as neighbors to a data void), significantly re-
duces these errors, and we have designed a simple OSSE
to demonstrate these effects.

The simple OSSE contains purely westerly flow (V 5 W 5 0),
which we have derived to mimic the thought experiment above.
To this end, we fit a fourth-order polynomial to the average u
profile from the ARPS simulation (containing an upper-level jet
at ;10 km): U 5 0.0021z4 2 0.067z3 1 0.30z2 1 5.14z 1 0.46,
where z is in kilometers. The domain is the same as in our
model OSSEs (80 km 3 60 km 3 15 km in the x, y, and z
dimensions, with an isotropic 500 m grid spacing), and the
radars are positioned roughly parallel to the westerly flow at
position 7 in Fig. 1. We limit the radar echo regions to an
elliptical shape spanning the entire domain horizontally, with
a depth of roughly 6 km, centered at a height of 10 km. We
then simulated radial velocities as in section 3a, and finally
retrieved vertical winds using the radar assimilation retrieval
method both without and with boundary masking (Figs. B1a,c
and Figs. B1b,d, respectively).

While the westerly horizontal flow is retrieved well in
the experiment with no boundary masking, significant spuri-
ous vertical motions are created within the valid data region
(illustrated by the gray shading). These spurious features
within the cloud are associated with the aforementioned
data boundary effects, while the strongest updrafts/down-
drafts at the horizontal edges of the cloud are induced by
the mass continuity constraint at the domain edges (which
also creates spurious return flow near the surface in Fig. B1c).
In Figs. B1b and B1d, the w component of the observational
adjoint is set to zero (i.e., C*P*Vr 5 0) at the boundary points
(plotted in black). Note that the spurious updraft features
within the cloud are almost completely eliminated, leaving
only those outside the valid data region associated with mass
continuity. The total RMSE (within the valid data region)
drops from 2.47 to 0.95 m s21 as a result of this computational
procedure. We have noted a similar elimination of spurious
updrafts in the model OSSEs throughout this study.
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